
MOSAIC: Processing a Trillion-Edge Graph on a Single Machine

Steffen Maass Changwoo Min Sanidhya Kashyap Woonhak Kang Mohan Kumar Taesoo Kim
Georgia Institute of Technology

Abstract
Processing a one trillion-edge graph has recently been demon-
strated by distributed graph engines running on clusters of
tens to hundreds of nodes. In this paper, we employ a single
heterogeneous machine with fast storage media (e.g., NVMe
SSD) and massively parallel coprocessors (e.g., Xeon Phi)
to reach similar dimensions. By fully exploiting the hetero-
geneous devices, we design a new graph processing engine,
named MOSAIC, for a single machine. We propose a new
locality-optimizing, space-efficient graph representation—
Hilbert-ordered tiles, and a hybrid execution model that en-
ables vertex-centric operations in fast host processors and
edge-centric operations in massively parallel coprocessors.

Our evaluation shows that for smaller graphs, MOSAIC
consistently outperforms other state-of-the-art out-of-core
engines by 3.2–58.6× and shows comparable performance
to distributed graph engines. Furthermore, MOSAIC can
complete one iteration of the Pagerank algorithm on a trillion-
edge graph in 21 minutes, outperforming a distributed disk-
based engine by 9.2×.

1. Introduction
Graphs are the basic building blocks to solve various prob-
lems ranging from data mining, machine learning, scientific
computing to social networks and the world wide web. How-
ever, with the advent of Big Data, the sheer increase in size
of the datasets [11] poses fundamental challenges to existing
graph processing engines. To tackle this issue, researchers
are focusing on distributed graph processing engines like
GraM [60], Chaos [53] and, Giraph [11] to process unprece-
dented, large graphs.

To achieve scalability with an increasing number of com-
puting nodes, the distributed systems typically require very
fast interconnects to cluster dozens or even hundreds of ma-
chines (e.g., 56 Gb Infiniband in GraM [60] and 40 GbE in

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23 - 26, 2017, Belgrade, Serbia

c⃝ 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064191

Chaos [53]). This distributed approach, however, requires a
costly investment of a large number of performant servers and
their interconnects. More fundamentally though distributed
engines have to overcome the straggler problem [53] and
fault tolerance [2, 38] due to the imbalanced workloads
on sluggish, faulty machines. These challenges often result
in complex designs of graph processing engines that incur
non-negligible performance overhead (e.g., two-phase proto-
col [53] or distributed locking [37]).

Another promising approach are single machine graph
processing engines which are cost effective while lowering
the entrance barrier for large-scale graphs processing. Similar
to distributed engines, the design for a single machine either
focuses on scaling out the capacity, via secondary storage–so-
called out-of-core graph analytics [18, 33, 36, 52, 65, 66], or
on scaling up the processing performance, by exploiting mem-
ory locality of high-end machines termed in-memory graph
analytics [48, 55, 63]. Unfortunately, the design principles of
out-of-core and in-memory engines for a single machine are
hardly compatible in terms of performance and capacity, as
both have contradicting optimization goals toward scalability
and performance due to their use of differently constrained
hardware resources (see Table 1).

To achieve the best of both worlds, in terms of capacity
and performance, we divide the components of a graph pro-
cessing engine explicitly for scale-up and scale-out goals.
Specifically, we assign concentrated, memory-intensive op-
erations (i.e., vertex-centric operations on a global graph) to
fast host processors (scale-up) and offload the compute and
I/O intensive components (i.e., edge-centric operations on
local graphs) to coprocessors (scale-out).

Following this principle, we implemented MOSAIC, a
graph processing engine that enables graph analytics on
one trillion edges in a single machine. It shows superior
performance compared to current single-machine, out-of-
core processing engines on smaller graphs and shows even
comparable performance on larger graphs, outperforming
a distributed disk-based engine [53] by 9.2×, while only
being 8.8× slower than a distributed in-memory one [60]
on a trillion-edge dataset. MOSAIC exploits various recent
technical developments, encompassing new devices on the
PCIe bus. On one hand, MOSAIC relies on accelerators, such
as Xeon Phis, to speed up the edge processing. On the other

Single machine [36, 52, 55, 63] GPGPU [31, 33, 64] MOSAIC Clusters [17, 43, 53, 60]

Data storage In-memory Out-of-core In-memory Out-of-core Out-of-core In-memory Out-of-core

Intended scale (#edges) 1–4 B 5–200 B 0.1–4 B 4–64 B 1 T 5–1000 B > 1 T
Performance (#edges/s) 1–2 B 20–100 M 1–7 B 0.4 B 1–3 B 1–7 B 70 M
Performance bottleneck CPU/Memory CPU/Disk PCIe NVMe NVMe Network Disk/Network
Scalability bottleneck Memory size Disk size Memory size Disk size Disk size Memory size Disk size

Optimization goals NUMA-aware I/O Massive PCIe Locality across Load balancing &
memory access bandwidth parallelism bandwidth host and coprocessors Network bandwidth

Cost Medium Low Low Low Low High Medium

Table 1: Landscape of current approaches in graph processing engines, using numbers from published papers for judging their intended
scale and performance. Each approach has a unique set of goals (e.g., dataset scalability) and purposes (e.g., a single machine or clusters). In
MOSAIC, we aim to achieve the cost effectiveness and ease-of-use provided by a single machine approach, while at the same time providing
comparable performance and scalability to clusters by utilizing modern hardware developments, such as faster storage devices (e.g., NVMe)
and massively parallel coprocessors (e.g., Xeon Phi).

hand, MOSAIC exploits a set of NVMe devices that allow
terabytes of storage with up to 10× throughput than SSDs.

We would like to emphasize that existing out-of-core
engines cannot directly improve their performance without
a serious redesign. For example, GraphChi [36] improves
the performance only by 2–3% when switched from SSDs
to NVMe devices or even RAM disks. This is a similar
observation made by other researchers [65, 66].

Furthermore, both single node and distributed engines
have the inherent problem of handling large datasets (>8TB
for 1 trillion edges), low locality and load-balancing issues
due to skewed graph structures. To tackle these, we propose a
new data structure, Hilbert-ordered tiles, an independent pro-
cessing unit of batched edges (i.e., local graphs) that allows
scalable, large-scale graph processing with high locality and
good compression, yielding a simple load-balancing scheme.
This data structure enables the following benefits: for copro-
cessors, it enables 1) better cache locality during edge-centric
operations and 2) I/O concurrency through prefetching; for
host processors, it allows for 1) sequential disk accesses that
are small enough to circumvent load-balancing issues and 2)
cache locality during vertex-centric operations.

In this paper, we make the following contributions:

• We present a trillion-scale graph engine on a single,
heterogeneous machine, called MOSAIC, using a set of
NVMes and Xeon Phis. For example, MOSAIC outper-
forms other state-of-the-art out-of-core engines by 3.2–
58.6× for smaller datasets up to 4 billion edges. Further-
more, MOSAIC runs an iteration of the Pagerank algo-
rithm with one trillion edges in 21 minutes (compared to
3.8 hours for Chaos [53]) using a single machine.

• We design a new data structure, Hilbert-ordered tiles, for
locality, load balancing, and compression, that yields a
compact representation of the graph, saving up to 68.8%
on real-world datasets.

• We propose a hybrid computation and execution model
that efficiently executes both vertex-centric operations
(on host processors) and edge-centric operations (on
coprocessors) in a scalable fashion. We implemented
seven graph algorithms on this model, and evaluated them
on two different single machine configurations.

We first present the challenges in processing current
large-scale graphs in §2 and give a brief background of
the technology trends underlying MOSAIC’s design in §3.
Then, we describe the design of MOSAIC in detail in §4, and
its execution model in §5. §6 describes the implementation
detail and §7 shows our implemented graph algorithms. §8
shows our evaluation results. §9 discusses, §10 compares
MOSAIC with other approaches, and finally, §11 provides the
conclusion.

2. Trillion Edge Challenges
With the inception of the internet, large-scale graphs com-
prising web graphs or social networks have become common.
For example, Facebook recently reported their largest social
graph comprises 1.4 billion vertices and 1 trillion edges. To
process such graphs, they ran a distributed graph processing
engine, Giraph [11], on 200 machines. But, with MOSAIC,
we are able to process large graphs, even proportional to Face-
book’s graph, on a single machine. However, there is a set of
nontrivial challenges that we have to overcome to enable this
scale of efficient graph analytics on a single machine:
Locality. One fundamental challenge of graph processing
is achieving locality as real world graphs are highly skewed,
often following a powerlaw distribution [14]. Using a tradi-
tional, vertex-centric approach yields a natural API for graph
algorithms. But, achieving locality can be difficult as, tradi-
tionally, the vertex-centric approach uses an index to locate
outgoing edges. Though accesses to the index itself are se-
quential, the indirection through the index results in many
random accesses to the vertices connected via the outgoing
edges [20, 39, 50].

To mitigate random accesses to the edges, an edge-centric
approach streams through the edges with perfect locality [52].
But, this representation still incurs low locality on vertex sets.

To overcome the issue of non-local vertex accesses, the
edges can be traversed in an order that preserves vertex local-
ity using, for example, the Hilbert order in COST [44] using
delta encoding. However, the construction of the compressed
Hilbert-ordered edges requires one global sorting step and a
decompression phase during runtime.

MOSAIC takes input from all three strategies and mainly
adopts the idea of using the Hilbert order to preserve locality
between batches of local graphs, the tiles (see sections §4.1,
§4.2).
Load balancing. The skewness of real-world graphs
presents another challenge to load balancing. Optimal graph
partitioning is an NP-complete problem [15], so in practice, a
traditional hash-based partitioning has been used [40], but it
still requires dynamic, proactive load-balancing schemes like
work stealing [53]. MOSAIC is designed to balance work-
loads with a simple and independent scheme, balancing the
workload between and within accelerators (see §5.5).
I/O bandwidth. The input data size for current large-scale
graphs typically reaches multiple terabytes in a conventional
format. For example, GraM [60] used 9 TB to store 1.2 T
edges in the CSR format. Storing this amount of data on a
single machine, considering the I/O bandwidth needed by
graph processing engines, is made possible with large SSDs
or NVMe devices.

Thanks to PCIe-attached NVMe devices, we can now
drive nearly a million IOPS per device with high bandwidth
(e.g., 2.5 GB/sec, Intel SSD 750 [22]). Now, the practical
challenge is to exhaust this available bandwidth, a design
goal of MOSAIC. MOSAIC uses a set of NVMe devices and
accelerates I/O using coprocessors (see §4.3).

3. Background
We provide a short background on the hardware trends
MOSAIC is designed to take into account.
Non-uniform memory access (NUMA). Modern architec-
tures for high-performance servers commonly include multi-
ple processors as well as memory on separate sockets, con-
nected by a high-bandwidth on-chip interconnect (e.g. Intel
QuickPath Interconnect (QPI) [25]). In such an architecture,
the cost of accessing memory on a remote socket is potentially
much higher than the local memory, thus coining the term
non-uniform memory access (NUMA) while a single socket
is sometimes referred to as a domain. MOSAIC optimizes for
such a NUMA architecture with its striped partitioning to
enable balanced accesses to multiple NUMA domains.
Non-volatile memory express (NVMe). NVMe is the inter-
face specification [1] to allow high-bandwidth, low-latency
access to SSD devices connected to the PCIe bus. In this pa-
per, we refer to these SSD devices as NVMes. These devices
allow much improved throughput and higher IOPS than con-
ventional SSDs on the SATA interface and currently reach up
to 5 GB/s and 850K IOPS (Intel DC P3608 [23]). MOSAIC
makes extensive use of these devices by exploiting their abil-
ity to directly copy data from the NVMe to e.g. a coprocessor,
as well as serving hundreds of requests at the same time.
Intel Xeon Phi. The Xeon Phi is a massively parallel
coprocessor by Intel [21]. This coprocessor has (in the first
generation, Knights Corner) up to 61 cores with 4 hardware
threads each and a 512-bit single instruction, multiple data

(SIMD) unit per core. Each core runs at around 1 GHz
(1.24 GHz for the Xeon Phi 7120A, used in MOSAIC). Each
core has access to a shared L2 cache of 512 KB per core
(e.g. 30.5 MB for 61 cores). MOSAIC uses the Xeon Phi for
massively parallel operations and optimizes for the small
amount of L2 cache by keeping the vertex state per subgraph
bounded to this small amount of cache (512 KB per core).
Furthermore, MOSAIC uses the many-core aspect to lauch
many subgraph-centric computations in parallel.

4. The MOSAIC Engine
Overview. We adopt the “think-like-a-vertex” abstraction
that allows for the implementation of most popular algorithms
for graph processing. It uses the edges of a graph to transport
intermediate updates from a source vertex to a target vertex
during the execution of graph algorithms. Each vertex is
identified by a 32-bit or 64-bit integer based on the scale
of the graph and has associated meta information (e.g., in
and out degree) as well as algorithm-dependent states (e.g., a
current and a next value per vertex in the Pagerank algorithm).

MOSAIC extends this abstraction to a heterogeneous ar-
chitecture, enabling tera-scale graph analytics on a single
machine. In particular, it uses multiple coprocessors (i.e.,
Xeon Phis) to perform computation-heavy edge processing
as well as I/O operations from NVMe devices by exploiting
the large number of cores provided by each coprocessor. At
the same time, MOSAIC dedicates host processors with faster
single-core performance to synchronous tasks: vertex-centric
operations (e.g., reduce) and orchestration of all components
on each iteration of the graph algorithms; Figure 3 gives an
overview of the interaction of the components of MOSAIC.

In this section, we first introduce the core data structure,
called tiles (§4.1), and their ordering scheme for locality
(§4.2), and explain each component of MOSAIC in detail
(§4.3).
4.1 Tile: Local Graph Processing Unit
In MOSAIC, a graph is broken down into disjoint sets of
edges, called tiles, each of which represents a subgraph of
the graph. Figure 1 gives an example of the construction
of the tiles and their corresponding meta structures. The
advantage of the tile abstraction is two-fold: 1) each tile is
an independent unit of edge processing—thus the name local
graph—which does not require a global, shared state during
execution, and 2) tiles can be structured to have an inherent
locality for memory writes by sorting local edges according
to their target vertex. Tiles can be evenly distributed to each
coprocessor through simple round-robin scheduling, enabling
a simple first-level load-balancing scheme. Furthermore, all
tiles can be enumerated by following the Hilbert order for
better locality (§4.2).

Inside a tile, the number of unique vertices is bounded
by Imax, which allows the usage of local identifiers ranging
from 0 to Imax (i.e., mapping from 4-8 bytes to 2 bytes
with Imax = 216). MOSAIC maintains per-tile meta index

1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

Global adjacency
matrix

Source
vertex

(global)

Target vertex (global)

➋

➏
➐

➑

➊

➎

➍
①

②

③

④

(,1)
(,2)

(,5)
(,4)

①
②

③
④

Tile-1

meta

①

②

③

④

(,4)
(,6)

(,5)
(,3)

①
②

③
④

meta

Tile-2

Partition

Tile

(local)

(local)

➊
➋

➌
➍

➎

➏

➐

➑

①

➊
(,1)①

: local vertex id
: local → global id
: local edge store order

(Imax = 4)

(S = 3)

(I2)

(I1)

(T1)

(T2)

➒

➒

➌
P11 P12 P14P13

P21 P22 P24P23

P31 P32 P34P33

P41 P42 P44P43

Figure 1: The Hilbert-ordered tiling and the data format of a tile in
MOSAIC. There are two tiles (blue and red regions) illustrated by
following the order of the Hilbert curve (arrow). Internally, each tile
encodes a local graph using local, short vertex identifiers. The meta
index Ij translates between the local and global vertex identifiers.
For example, edge 2 , linking vertex 1 to 5, is sorted into tile T1,
locally mapping the vertices 1 to 1 and 5 to 3 .

structures to map a local vertex identifier of the subgraph (2
bytes) to its global identifier in the original graph (4-8 bytes).
This yields a compact representation and is favorable to fit
into the last level cache (LLC), for example with floats the
vertex states per tile amount to 216 ∗ 4 bytes = 256KB. This
easily fits into the LLC of the Xeon Phi (512 KB per core).
Note that, even with the number of unique vertices in a tile
being fixed, the number of edges per tile varies, resulting
in varying tile sizes. The static load balancing scheme is
able to achieve a mostly balanced workload among multiple
coprocessors (see Figure 9, < 2.3% of imbalance).
Data format. More concretely, the format of a tile is shown
in Figure 2 and comprises the following two elements:
• The index of each tile, stored as meta data. The index is

an array that maps a local vertex identifier (the index of
the array) to the global vertex identifier, which translates
to 4 or 8 bytes, depending on the size of a graph.

• The set of edges, sorted by target vertices (tagged with
weights for weighted graphs). The edges are stored either
as an edge list or in a compressed sparse rows (CSR) rep-
resentation, using 2 bytes per vertex identifier. MOSAIC
switches between either representation based on which
results in a smaller overall tile size. The CSR represen-
tation is chosen if the number of target vertices is larger
than twice the number of edges. This amortizes storing
the offset in the CSR representation.

Locality. Two dimensions of locality are maintained inside
a tile; 1) sequential accesses to the edges in a local graph
and 2) write locality enabled by storing edges in sorted
order according to their target vertices. In other words,
linearly enumerating the edges in a tile is favorable to
prefetching memory while updating the vertex state array (i.e.,
an intermediate computation result) in the order of the target

①

②

③

④

➎

➏

➐

➑
➒

(, 2)
(, 3)

#tgt

④
④

②
④

src tgt src (tgt,#tgt)

2B

2B

2B

2B 2B
sorted by

Index Edges
local

①
②
③
④

①

②

③
①

③

②
②

④

①

②

③
①

③

➎
➏
➐
➑
➒

compressed

global

4
6
5
3

Figure 2: An overview of the on-disk data structure of MOSAIC,
with both index and edge data structures, shown for tile T2 (see
Figure 1). The effectiveness of compressing the target-vertex array
is shown, reducing the number of bytes by 20% in this simple
example.

vertex enables memory and cache locality due to repeated
target vertices in a tile. For example, in Figure 1, the local
vertex 4 in tile T2 is the target of all three consecutive edges
7 , 8 , and 9 .
Conversion. To populate the tile structure, we take a stream
of partitions as an input, and statically divide the adjacency
matrix representation of the global graph (Figure 1) into
partitions of size S × S, where S = 216.

We consume partitions following the Hilbert order (§4.2)
and add as many edges as possible into a tile until its index
structure reaches the maximum capacity (Imax) to fully
utilize the vertex identifier (i.e., 2 bytes) in a local graph.

An example of this conversion is given in Figure 1, using
the parameters Imax = 4 and S = 3: After adding edges
1 through 4 (following the Hilbert order of partitions:
P11, P12, P22, . . .), there are no other edges which could be
added to the existing four edges without overflowing the
local vertex identifiers. Thus, tile T1 is completed and tile T2

gets constructed with the edges 5 through 9 , continuing to
follow the Hilbert order of partitions. This conversion scheme
is an embarrassingly parallel task, implementable by a simple
sharding of the edge set for a parallel conversion. It uses one
streaming step over all partitions in the Hilbert order and
constructs the localized CSR representations.

Compared to other, popular representations, the overhead
is low. Like the CSR representation, the Hilbert-ordered
tiles also require only one streaming step of the edge set.
In comparison to Hilbert-ordered edges [44], the Hilbert-
ordered tiles save a global sorting step, only arrange the tiles,
not the edges, into the global Hilbert order.
4.2 Hilbert-ordered Tiling
Although a tile has inherent locality in processing edges
on coprocessors, another dimension of locality can also be
achieved by traversing them in a certain order, known as the
Hilbert order [19, 44]. In particular, this can be achieved by
traversing the partitions (Pi,j) in the order defined by the
Hilbert curve during the conversion. The host processors
can preserve the locality of the global vertex array across
sequences of tiles.
Hilbert curve. The aforementioned locality is a well-known
property of the Hilbert curve, a continuous fractal space-

I1 I2

T2

...

T1Tt+1 T2

...
... ...

Active tilesPrefetching
(concurrent I/O)

T1

T1

...
EP

NVMe

core

local

Xeon Phi

...
<current state> <next state>

Global
vertex state

I1

(×61 cores)

(T1,)

I2 ...

...

Tile
transfer

Meta
transfer

(cache locality)

(×6)

Global
reducersGR1 GR2

LF1 LR1

(T1,)

(T1,) (T1,)

(memory locality)

per
 socket

Host
Processors

(Xeon)

(local, own memory)

per Xeon Phi
(×4)

PCIe

...

messaging via
ring buffer

data transfer
T1 tile

I1 meta
local data

per tile
process

... stripped

/

Tile
processing

Figure 3: MOSAIC’s components and the data flow between them.
The components are split into scale-out for Xeon Phi (local fetcher
(LF), local reducer (LR) and edge processor (EP)) and scale-up
for host (global reducer (GR)). The edge processor runs on a Xeon
Phi, operating on local graphs while host components operate on
the global graph. The vertex state is available as both a read-only
current state as well as a write-only next state.

filling curve that translates a pair of coordinates (i, j) (a
partition id) to a scalar value d (the partition order), and
vice versa. This operation preserves partial locality between
neighboring scalar values (i.e., d), as they share parts of the
respective coordinate sets. In MOSAIC, this allows close tiles
in the Hilbert order (not limited to immediate neighbors) to
share parts of their vertex sets.
Locality. MOSAIC processes multiple tiles in parallel on
coprocessors: MOSAIC runs the edge processing on four
Xeon Phis, each of which has 61 cores; thus 244 processing
instances are running in parallel, interleaving neighboring
tiles among each other following the Hilbert order of tiles.
Due to this scale of concurrent accesses to tiles, the host
processors are able to exploit the locality of the shared vertex
states associated with the tiles currently being processed,
keeping large parts of these states in the cache. For example,
vertex 4 in Figure 1 is the common source vertex of three
edges (i.e., 3 , 5 , and 7) in T1 and T2, allowing locality
between the subsequent accesses.
I/O prefetching. Traversing tiles in the Hilbert order is not
only beneficial to the locality on the host, but also effective for
prefetching tiles on coprocessors. While processing a tile, we
can prefetch neighboring tiles from NVMe devices to memory
by following the Hilbert-order in the background, which
allows coprocessors to immediately start the tile processing
as soon as the next vertex state array arrives.
4.3 System Components
From the perspective of components, MOSAIC is subdivided
according to its scale-up and scale-out characteristics, as
introduced in Figure 3. Components designed for scaling

out are instantiated per Xeon Phi, allowing linear scaling
when adding more pairs of Xeon Phis and NVMes. These
components include the local fetcher (LF , fetches vertex
information from the global array as input for the graph
algorithm), the edge processor (EP , applies an algorithm-
specific function per edge), and local reducer (LR, receives
the vertex output from the edge processor to accumulate onto
the global state). A global component, the global reducer
(GR), is designed to take input from all local reducers to
orchestrate the accumulation of vertex values in a lock-free,
NUMA-aware manner.
Local fetcher (LF). Orchestrates the data flows of graph
processing; given a tile, it uses the prefetched meta data (i.e.,
index) to retrieve the current vertex states from the vertex
array on the host processor, and then feeds them to the edge
processor on the coprocessor.
Edge processor (EP). The edge processor executes a func-
tion on each edge, specific to the graph algorithm being ex-
ecuted. Each edge processor runs on a core on a coproces-
sor and independently processes batches of tiles (streaming).
Specifically, it prefetches the tiles directly from NVMe with-
out any global coordination by following the Hilbert-order. It
receives its input from the local fetcher and uses the vertex
states along with the edges stored in the tiles to execute the
graph algorithm on each edge in the tile. It sends an array of
updated target vertex states back to the local reducer running
on the host processor after processing the edges in a tile.
Local reducer (LR). Once the edge processor completes
the local processing, the local reducer receives the computed
responses from the coprocessors, aggregates them for batch
processing, and then sends them back to global reducers for
updating the vertex states for the next iteration. This design
allows for large NUMA transfers to the global reducers
running on each NUMA socket and avoids locks for accessing
the global vertex state.
Global reducer (GR). Each global reducer is assigned a
partition of the global vertex state and receives its input from
the local reducer to update the global vertex state with the
intermediate data generated by the graph algorithm on a local
graph (i.e., tiles). As modern systems have multiple NUMA
domains, MOSAIC assigns disjoint regions of the global
vertex state array to dedicated cores running on each NUMA
socket, allowing for large, concurrent NUMA transfers in
accessing the global memory.
Striped partitioning. Unlike typical partitioning techniques,
which assign a contiguous array of state data to a single
NUMA domain, MOSAIC conducts striped partitioning, as-
signing “stripes” of vertices, interleaving the NUMA domains
(as seen in Figure 3). This scheme exploits an inherent paral-
lelism available in modern architectures (i.e., multiple sock-
ets). Without the striped partitioning, a single core has to
handle a burst of requests induced by the Hilbert-ordered

// On edge processor (co-processor)
// Edge e = (Vertex src, Vertex tgt)
def Pull(Vertex src, Vertex tgt):
 return src.val / src.out_degree

1
2
3
4

G
lo

ba
l g

ra
ph

pr
oc

es
si

ng

L
oc

al
 g

ra
ph

pr

oc
es

si
ng

 o
n

T
il

e

Edge-centric operation

Vertex-centric operation

// On edge processor/global reducers (both)
def Reduce(Vertex v1, Vertex v2):
 return v1.val + v2.val

// On global reducers (host)
def Apply(Vertex v):
 v.val = (1 - α) + α × v.val

5
6
7

8
9

10

Figure 4: The Pagerank implementation on MOSAIC. Pull() oper-
ates on edges, returning the impact of the source vertex, Reduce()
accumulates both local and global impacts, while Apply() applies
the damping factor α to the vertices on each iteration.

tiles in a short execution window due to the inherent locality
in the vertex states accessed.

In addition, the dedicated global reducers, which combine
the local results with the global vertex array, can avoid global
locking or atomic operations during the reduce operations, as
each core has exclusive access to its set of vertex states.

At the end of a superstep, after processing all edges,
MOSAIC swaps the current and next arrays.

5. The MOSAIC Execution Model
MOSAIC adopts the popular “think-like-a-vertex” program-
ming model [37, 40], but slightly modifies it to fully exploit
the massive parallelism provided by modern heterogeneous
hardware. In the big picture, coprocessors perform edge pro-
cessing on local graphs by using numerous, yet slower cores,
while host processors reduce the computation result to their
global vertex states by using few, yet faster cores. To ex-
ploit such parallelism, two key properties are required in
MOSAIC’s programming abstraction, namely commutativ-
ity and associativity [12, 17, 40]. This allows MOSAIC to
schedule computation and reduce operations in any order.
Running example. In this section, we explain our approach
by using the Pagerank algorithm (see Figure 4), which ranks
vertices according to their impact to the overall graph, as a
running example.
5.1 Programming Abstraction
MOSAIC provides an API similar to the popular Gather-
Apply-Scatter (GAS) model [16, 37, 40]. The GAS model is
extended as the Pull-Reduce-Apply (PRA) model, introduc-
ing a reduce operation to accommodate the heterogeneous
architecture MOSAIC is running on. The fundamental APIs
of the PRA model in MOSAIC for writing graph algorithms
are as follows:
• Pull(e): For every edge (u, v) (along with a weight in case

of a weighted graph), Pull(e) computes the result of the
edge e by applying an algorithm-specific function on the
value of the source vertex u and the related data such as in-
or out-degrees. For Pagerank, we first pull the impact of
a source vertex (the state value divided by its out-degree)

① ② ③ ④

Tile-1

(,4)
(,6)

(,5)
(,3)

①
②

③
④

meta

Tile-2

(local)

①

②

③

④

➊
➋

➌
➍

①
➊

: local vertex id
: local edge

: global vertex id

for e in [, , ,]:
 e.tgt.val = Pull(e)

➊ ➋ ➌ ➍
(local)

for e in [, , , ,]:
 e.tgt.val = Pull(e)

① ② ③ ④
Reduce(u, v)Reduce(u, v)

(,1)
(,2)

(,5)
(,4)

①
②

③
④

meta

1 2 3 4 5 6 Global Reducing

Local graph processing

T1 T2 T3 T4 Hilbert-ordered tiles
(on NVMe)T5 ...

Streaming

Reduce(u, v)

1

①

②

③

④

➎

➏

➐

➑
➒

➎ ➏ ➐ ➑ ➒

(T1) (T2)

Figure 5: The execution model of MOSAIC: it runs Pull() on local
graphs while Reduce() is being employed to merge vertex states, for
both the local as well as the global graphs.

and then gather this result for the state of the target vertex
by adding to the previous state.

• Reduce(v1, v2): Given two values for the same vertex,
Reduce() combines both results into a single output. This
function is invoked by edge processors on coprocessors as
well as global reducers on the host. It operates on the new
value for the next iteration rather than the current value
being used as an input to Pull(e). For Pagerank, the reduce
function simply adds both values, aggregating the impact
on both vertices.

• Apply(v): After reducing all local updates to the global
array, Apply() runs on each vertex state in the array,
essentially allowing the graph algorithm to perform non-
associative operations. The global reducers on the host
run this function at the end of each iteration. For Pagerank,
this step normalizes (a factor α) the vertex state (the sum
of all impacts on incoming vertices).
Figure 5 illustrates an execution using these APIs on two

tiles and a global vertex array. When processing tiles in
parallel, the result might overlap, but the tiles themselves
can be processed independently of each other.
Generality. Our programming abstraction is general enough
to express the most common graph algorithms, equivalent to
the popular GAS abstraction. We implemented seven differ-
ent algorithms as an example, ranging from graph traversal
algorithms (Bread-First Search, Weakly Connected Compo-
nents, Single-Source Shortest Path) to graph analytic algo-
rithms (Pagerank, Bayesian Belief Propagation, Approximate
Triangle Counting, Sparse Matrix-Vector Multiplication).
5.2 Hybrid Computation Model
The PRA model of MOSAIC is geared towards enabling
a hybrid computation model: edge-centric operations (i.e.,
Pull()) are performed on coprocessors and vertex-centric
operations (i.e., Apply()) on host processors. Aggregating
intermediate results is done on both entities (i.e., Reduce()).
This separation caters to the strengths of the specific entities:
While host processors have faster single-core performance
with larger caches, the number of cores is small. Thus, it

is suitable for the operations with considerably more cycles
for execution (i.e., synchronous operations such as Apply()).
On the contrary, the coprocessor has a larger number of
cores, albeit with smaller caches and a lower clock speed,
rendering it appropriate for massively parallel computation
(i.e., processing edges). Our current implementation follows
a synchronous update of the vertex states, but it would be
straightforward to adopt an asynchronous update model with
no changes in the current programming abstraction.
Edge-centric operations. In this hybrid computation model,
coprocessors carry out the edge-centric operations; each core
processes one tile at a time by executing Pull() on each edge,
locally accumulating the results by using Reduce() to reduce
the amount of data to be sent over PCIe, and sending the
result back to global reducer on the host processor.
Vertex-centric operations. In MOSAIC, operations for ver-
tices are executed on the host processor. MOSAIC updates the
global vertex array via Reduce(), merging local and global
vertex states. At the end of each iteration, Apply() allows the
execution of non-associative operations to the global vertex
array.
5.3 Streaming Model
In MOSAIC, by following the predetermined Hilbert-order
in accessing graph data (i.e., tile as a unit), each component
can achieve both sequential I/O by streaming tiles and meta
data to proper coprocessors and host processors, as well
as concurrent I/O by prefetching the neighboring tiles on
the Hilbert curve. This streaming process is implemented
using a message-passing abstraction for all communications
between components without any explicit global coordination
in MOSAIC.
5.4 Selective Scheduling
When graph algorithms require only part of the vertex set
in each iteration (e.g., BFS), one effective optimization is
to avoid the computation for vertices that are not activated.
For MOSAIC, we avoid prefetching and processing of the
tiles without active source vertices, reducing the total I/O
amount. This leads to faster computation in general while
still maintaining the opportunity for prefetching tiles.
5.5 Load Balancing
MOSAIC employs load balancing on two levels: 1) between
Xeon Phis, 2) between threads on the same Xeon Phi. The
first level is a static scheme balancing the number of tiles
between all Xeon Phis. This macro-level scheme results in
mostly equal partitions even though individual tiles may not
all be equally sized. For example, even in our largest real-
world dataset (hyperlink14), tiles are distributed to four Xeon
Phis in balance (30.7–31.43 GB, see Figure 9).

On a second level, MOSAIC employs a dynamic load-
balancing scheme between all edge processors on a Xeon
Phi. Unfortunately, tiles are not equally sized (see Figure 9),
resulting in varying processing times per tile. As MOSAIC
prefetches and receives input from the host on the Xeon

Phi into a circular buffer, one straggler in processing a tile
might block all other edge processors. To avoid this, multiple
cores are assigned to tiles with many edges. Each core is
assigned a disjoint set of edges in a tile, to enable parallel
processing without interactions between cores. Each core
creates a separate output for the host to reduce onto the global
array.

To decide the number of edge processors per tile, MOSAIC
computes the number of partitions, optPartitions, per tile
such that blocking does not occur. Intuitively, the processing
time of any individual tile always has to be smaller than the
processing time of all other tiles in the buffer to avoid head-of-
line blocking. To determine the optimal number of partitions,
MOSAIC uses a worst-case assumption that all other tiles in
the buffer are minimally sized (i.e. contain 216 edges). The
resulting formula then simply depends on the processing rate
(edges
second).

Specifically, MOSAIC uses the following calculation to
determine optPartitions: Using the number of buffers
countbuffers, the number of workers countworkers and the
rate at which edges can be processed both for small tiles
ratemin as well as for large tiles ratemax, the following
formula determines optPartitions:

bestSplit =

minEdges
ratemin

∗ countbuffers

countworkers
∗ ratemax

optPartitions =

⌈
countEdges

bestSplit

⌉
The rate of processing is the only variable to be sampled at
runtime, all other variables are constants.
5.6 Fault Tolerance
To handle fault tolerance, distributed systems typically use
a synchronization protocol (e.g., two-phase commits) for
consistent checkpointing of global states among multiple
compute nodes. In MOSAIC, due to its single-machine design,
handling fault tolerance is as simple as checkpointing the
intermediate state data (i.e., vertex array). Further, the read-
only vertex array for the current iteration can be written to
disk parallel to the graph processing; it only requires a barrier
on each superstep. Recovery is also trivial; processing can
resume with the last checkpoint of the vertex array.

6. Implementation
We implemented MOSAIC in C++ in 16,855 lines of code.
To efficiently fetch graph data on NVMe from Xeon Phi,
we extended the 9p file system [4] and the NVMe device
driver for direct data transfer between the NVMe and the
Xeon Phi without host intervention. Once DMA channels
are set up between NVMe and Xeon Phi’s physical memory
through the extended 9p commands, actual tile data transfer
is performed by the DMA engines of the NVMe. To achieve
higher throughput, MOSAIC batches the tile reading process
and aligns the starting block address to 128KB in order
to fully exploit NVMe’s internal parallelism. In addition,
for efficient messaging between the host and the Xeon Phi,

Algorithm Lines of code Reduce-
operator

Complexity
Runtime I/O Memory

PR 86 + O(E) O(2V)
BFS 102 min O(E⋆) O(2V)
WCC 88 min O(E⋆) O(2V)
SpMV 95 + O(E) O(2V)
TC 194 min, + O(2E) O(8V)
SSSP 91 min O(E⋆) O(2V)
BP 193 ×, + O(2mE) O(8mV)

Table 2: Graph algorithms implemented on MOSAIC: associative
and commutative operations used for the reducing phase, and their
runtime complexity per iteration. E is the set of edges, V the set of
vertices while E⋆ denotes the active edges that MOSAIC saves with
selective scheduling. In BP, m denotes the number of possible states
in a node.

MOSAIC switches between PIO and DMA modes depending
on the message size. The messaging mechanism is exposed
as a ring buffer for variable sized elements. Due to the longer
setup time of the DMA mechanism, MOSAIC only uses DMA
operations for requests larger than 32 KB. Also, to use the
faster DMA engine of the host1 and avoid costly remote
memory accesses from the Xeon Phi, MOSAIC allocates
memory for communication on the Xeon Phi side.

7. Graph Algorithms
We implement seven popular graph algorithms by using
MOSAIC’s programming model. Table 2 summarizes the algo-
rithmic complexity (e.g., runtime I/O and memory overheads)
of each algorithm.

Pagerank (PR) approximates the impact of a single vertex
on the graph. MOSAIC uses a synchronous, push-based
approach [52, 63].

Breadth-first search (BFS) calculates the minimal edge-
hop distance from a source to all other vertices in the graph.

Weakly connected components (WCC) finds subsets of
vertices connected by a directed path by iteratively propagat-
ing the connected components to its neighbors.

Sparse matrix-vector multiplication (SpMV) calcu-
lates the product of the sparse edge matrix with a dense
vector of values per vertex.

Approximate triangle counting (TC) approximates the
number of triangles in an unweighted graph. We extend the
semi-streaming algorithm proposed by Becchetti et al. [3].

Single source shortest path (SSSP) operates on weighted
graphs to find the shortest path between a single source and all
other vertices. It uses a parallel version of the Bellman-Ford
algorithm [5].

Bayesian belief propagation (BP) operates on a weighted
graph and propagates probabilities at each vertex to its neigh-
bors along the weighted edges [28].

8. Evaluation
We evaluate MOSAIC by addressing the following questions:
• Performance: How does MOSAIC perform with real-

world and synthetic datasets, including a trillion-edge

1 Based on our measurements, a host-initiated DMA operation is nearly 2
times faster than a Xeon Phi-initiated one.

Type Game PC Workstation
Nickname (vortex) (ramjet)

Model E5-2699 v3 E5-2670 v3
CPU 2.30 GHz 2.30 GHz
Core 18 × 1 12 × 2
RAM 64 GB 768 GB
LLC 45 MB× 1 30 MB× 2
PCIe v3 (48L, 8 GT/s) v3 (48L, 8 GT/s)
NVMe 1 6
Xeon Phi 1 4

Table 3: Two machine configurations represent both a consumer-
grade gaming PC (vortex), and a workstation (ramjet, a main target
for tera-scale graph processing).

graph, compared to other graph processing engines? (§8.2,
§8.3)

• Design decisions: What is the performance impact of
each design decision made by MOSAIC, including the
Hilbert-ordered tiles, selective-scheduling, fault-tolerance
and the two-level load balancing scheme? (§8.4)

• Scalability: Does MOSAIC scale linearly with the increas-
ing number of Xeon Phis and NVMes, and does each al-
gorithm fully exploit the parallelism provided by Xeon
Phis and the fast I/O provided by NVMes? (§8.5)

8.1 Experiment Setup
To avoid optimizing MOSAIC for specific machine configura-
tions or datasets, we validated it on two different classes of
machines—a gaming PC and a workstation, using six differ-
ent real-world and synthetic datasets, including a synthetic
trillion-edge graph following the distribution of Facebook’s
social graph.
Machines. Table 3 shows the specifications of the two differ-
ent machines, namely vortex (a gaming PC) and ramjet (a
workstation). To show the cost benefits of our approach, we
demonstrate graph analytics on 64 B edges (hyperlink14) on
a gaming PC. To process one trillion edges, we use ramjet
with four Xeon Phis and six NVMes.
Datasets. We synthesized graphs using the R-MAT gen-
erator [7], following the same configuration used by the
graph500 benchmark.2 The trillion-edge graph is synthesized
using 232 vertices and 1 T edges, following Facebook’s re-
ported graph distribution [11]. We also use two types of real-
world datasets, social networks (twitter [35]) and web graphs
(uk2007-05 [6, 49], and hyperlink14 [45]). These datasets
contain a range of 1.5–64.4 B edges and 41.6–1,724.6 M ver-
tices (35–37× ratio), with raw data of 10.9–480.0 GB (see
Table 4). We convert each dataset to generate the tile struc-
ture, resulting in conversion times of 2 to 4 minutes for small
datasets (up to 30 GB). Larger datasets finish in about 51
minutes (hyperlink14, 480 GB, 21 M edges/s) or about 30
hours for the trillion-edge graph (8,000 GB). In comparison,
GridGraph takes 1 to 2 minutes to convert the smaller datasets
into its internal representation. Furthermore, MOSAIC yields
a more compact representation, e.g., MOSAIC fits the twitter

2 Default parameters are a = 0.57, b = 0.19, c = 0.19, http://www.
graph500.org/specifications

http://www.graph500.org/specifications
http://www.graph500.org/specifications

Graph #vertices #edges Raw data MOSAIC

Data size (reduction, bytes/edge) Prep. time
⋆rmat24 16.8M 0.3B 2.0GB 1.1GB (-45.0%, 4.4) 2 m 10 s

twitter 41.6M 1.5B 10.9GB 7.7GB (-29.4%, 5.6) 2 m 24 s
⋆rmat27 134.2M 2.1B 16.0GB 11.1GB (-30.6%, 5.5) 3 m 31 s

uk2007-05 105.8M 3.7B 27.9GB 8.7GB (-68.8%, 2.5) 4 m 12 s
hyperlink14 1,724.6M 64.4B 480.0GB 152.4GB (-68.3%, 2.5) 50 m 55 s

⋆rmat-trillion 4,294.9M 1,000.0B 8,000.0GB 4,816.7GB (-39.8%, 5.2) 30 h 32 m

Table 4: The graph datasets used for MOSAIC’s evaluation. The
data size of MOSAIC represents the size of complete, self-contained
information of each graph dataset, including tiles and meta-data
generated in the conversion step. The ⋆ mark indicates synthetic
datasets. Each dataset can be efficiently encoded with 29.4–68.8 %
of its original size due to MOSAIC tile structure.

graph into 7.7 GB, while GridGraph’s conversion is more
than 4.3× larger at 33.6 GB.
Methodology. We compare MOSAIC to a number of dif-
ferent systems, running on a diverse set of architectures.
Primarily, we compare MOSAIC with GraphChi [36], X-
Stream [52] and GridGraph [66] as these systems focus on
a single-machine environment using secondary storage. We
run these systems on ramjet using all 6 NVMe in a RAID-0
setup, enabling these systems to take advantage of the faster
storage hardware. Additionally, we use the published results
of other graph engines, allowing a high-level comparison
to MOSAIC, from a diverset set of architectures for graph
engines: For single machines, we show the results for in-
memory processing, with Polymer [63] and Ligra [55], and
GPGPU, with TOTEM [64] and GTS [33]. Furthermore, we
show the results for distributed systems, using the results for
Chaos [53], on a 32-node cluster, as an out-of-core system, as
well as GraphX [17] as an in-memory system. Furthermore,
we include a special, pagerank-only in-memory system by
McSherry et al [43] to serve as an estimation of a lower bound
on processing time. Both GraphX and McSherry’s system
were run on the same 16-node cluster with a 10G network
link [43].

With respect to datasets, we run other out-of-core engines
for a single machine on the four smaller datasets (rmat24,
twitter, rmat27, uk2007-05). We run both the Pagerank (PR)
as well as the Weakly Connected Components (WCC) algo-
rithm on the out-of core engines. These algorithms represent
two different classes of graph algorithms: PR is an iterative
algorithm, where in the initial dozens of iterations almost all
vertices are active while WCC is a traversal algorithm with
many vertices becoming inactive after the first few iterations.
This allows a comparison on how well the processing system
can handle both a balanced as well as an imbalanced number
of active vertices.
I/O performance. Our ring buffer serves as a primitive
transport interface for all communications. It can achieve
1.2 millions IOPS with 64 byte messages and 4 GB/sec
throughput with larger messages between a Xeon Phi and
a host (see Figure 6). We measure the throughput of random
read operations when reading from a single file on an NVMe
in four configurations: (a) a host application directly accesses

0.0
1.0
2.0
3.0
4.0
5.0

0 10 20 30 40 50 60

GB/sec

threads

1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0 10 20 30 40 50 60

IOPS (x106)

threads

2

64B
128B
512B

1K
4K

64K

0.0
0.5
1.0
1.5
2.0
2.5
3.0

64KB 128KB256KB512KB 1MB 2MB 4MB 8MB 16MB 32MB

G
B

/s
ec

Block size

3
(a) Host ↔ NVMe

(b) Xeon Phi ↔ NVMe
(c) Xeon Phi ↔ Host (NFS) ↔ NVMe

(d) Xeon Phi ↔ Host (virtio) ↔ NVMe

Figure 6: 1 Throughput and 2 IOPS of our ring buffer for
various size messages between a Xeon Phi and its host, and 3
the throughput of random read operations on a file in an NVMe.

0
2
4
6
8

10
12
14
16
18

10 20 30 40 50 60 70 80
G

B
/s

ec
Time (sec)

iteration1 iteration2 iteration3 iteration4 iteration5

Figure 7: Aggregated I/O throughput for SpMV on the hyperlink14
graph for the first five iterations. The drop in throughput marks the
end of an iterations while the maximum throughput of MOSAIC

reaches up to 15 GB/sec.

the NVMe, showing the best performance, 2.5 GB/sec; (b)
the Xeon Phi initiates the file operations and the data from
the NVMe is directly delivered to the Xeon Phi using P2P
DMA, 2.5 GB/sec. For comparison, we also evaluated two
more scenarios: (c) the Xeon Phi initiates file operations,
while the host delivers the data to the Xeon Phi through NFS;
and (d) using virtio over PCIe, resulting in 10× slower
performance.
8.2 Overall Performance
We ran seven graph algorithms (Table 2) on six different
datasets (Table 4) with two different classes of single ma-
chines (Table 3). Table 5 shows our experimental results. In
summary, MOSAIC shows 686–2,978 M edges/sec processing
capability depending on datasets, which is even comparable
to other in-memory engines (e.g., 695–1,390 M edges/sec in
Polymer [63]) and distributed engines (e.g., 2,770–6,335 M
edges/sec for McSherry et al.’s Pagerank-only in-memory
cluster system [43]).

An example of the aggregated I/O throughput of MOSAIC
with 6 NVMes is shown in Figure 7, with the hyperlink14
graph and the SpMV algorithm. The maximum throughput
reaches up to 15 GB/sec, close to the maximum possible
throughput per NVMe, highlighting MOSAIC’s ability to
saturate the available NVMe throughput.
Trillion-edge processing. MOSAIC on ramjet can perform
out-of-core processing over a trillion-edge graph. We run all
non-weighted algorithms (PR, BFS, WCC, SpMV, TC) on

Graph #edges (ratio) PR‡ BFS† WCC† SpMV‡ TC‡ SSSP† BP‡

vortex ramjet vortex ramjet vortex ramjet vortex ramjet vortex ramjet vortex ramjet vortex ramjet

⋆rmat24 0.3B (1×) 0.72 s 0.31 s 18.04 s 3.52 s 18.51 s 3.92 s 0.58 s 0.30 s 2.06 s 1.46 s 45.32 s 11.71 s 1.09 s 0.47 s
twitter 1.5B (5×) 4.99 s 1.87 s 51.65 s 11.20 s 59.46 s 18.58 s 4.59 s 1.66 s 13.90 s 9.42 s 269.99 s 54.06 s 7.78 s 5.34 s

⋆rmat27 2.1B (8×) 6.28 s 3.06 s 71.79 s 17.02 s 78.07 s 22.18 s 6.02 s 2.74 s 22.10 s 16.52 s 353.75 s 101.95 s 10.64 s 8.42 s
uk2007-05 3.7B (14×) 5.75 s 1.76 s 11.35 s 1.56 s 18.85 s 5.34 s 5.68 s 1.49 s 11.32 s 4.31 s 11.41 s 2.05 s 15.02 s 4.57 s
hyperlink14 64.4B (240×) 100.85 s 21.62 s 15.61 s 6.55 s 2302.39 s 708.12 s 85.45 s 19.28 s - 68.03 s 17.32 s 8.68 s - 70.67 s

⋆rmat-trillion 1,000.0B (3,726×) - 1246.59 s - 3941.50 s - 7369.39 s - 1210.67 s - 5660.35 s - - - -

Table 5: The execution time for running graph algorithms on MOSAIC with real and synthetic (marked ⋆) datasets. We report the seconds per
iteration for iterative algorithms (‡: PR, SpMV, TC, BP), while reporting the total time taken for traversal algorithms (†: BFS, WCC, SSSP).
TC and BP need more than 64 GB of RAM for the hyperlink14 graph and thus do not run on vortex. We omit results for rmat-trillion on SSSP
and BP as a weighted dataset of rmat-trillion would exceed 8 TB which currently cannot be stored in our hardware setup.

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8

5 10 15 20 25

I/
O

re
ad

s
(G

B
/s

ec
)

GraphChi
5 10 15 20 25

X-Stream

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8

5 10 15 20 25

I/
O

re
ad

s
(G

B
/s

ec
)

GridGraph
5 10 15 20 25

MOSAIC

Figure 8: I/O throughput of out-of-core graph engines for 25
seconds of the Pagerank algorithm and the uk2007-05 dataset
using a single NVMe on ramjet. The iteration boundaries are
marked, neither GraphChi nor X-Stream finish the first iteration.
GraphChi does not exploit the faster storage medium. X-Stream
shows high throughput but reads 3.8× more per iteration than
MOSAIC. GridGraph suffers from the total amount of data transfer
and does not fully exploit the medium. MOSAIC with a single Xeon
Phi and NVMe can drive 2.5 GB/s throughput.

this graph but exclude weighted algorithms due to storage
space constraints of our experimental setup for the weighted
dataset (>8 TB). The results show that MOSAIC can perform
one iteration of Pagerank in 1,246 seconds (20.8 minutes),
outperforming Chaos [53] by a factor of 9.2×.
8.3 Comparison With Other Systems
We compare MOSAIC with five different types of graph
processing engines:
• Single machine, out-of-core: These systems include

GraphChi [36], X-Stream [52], and GridGraph [66] and
are close in nature to MOSAIC.

• Single machine, in-memory: Operating on a high-end
server with lots of memory, we include Polymer [63] and
Ligra [55].

• Single machine, GPGPU: As an upper bound on the
computing power on a single machine, we include
TOTEM [64] and GTS [33], running in the in-memory
mode on two GPGPUs.

• Distributed, out-of-core: To scale to very large graphs,
up to a trillion edges, Chaos [53] proposes a distributed,
out-of-core disk-based system using 32 nodes.

• Distributed, in-memory: As an upper bound on the dis-
tributed computing power, we include GraphX [17] run-
ning on 16 nodes as well as a specialized, Pagerank-only
system running on 16 nodes by McSherry et al [43].

We replicate the experiments for single machine, out-of-
core engines by ourselves on ramjet with 6 NVMes in a
RAID 0, but take experimental results for all other types of
graph engines directly from the authors [17, 33, 43, 53, 55,
63], as we lack appropriate infrastructure for these systems.

The results of this comparison with Pagerank are shown
in Table 6. We split our discussion of the comparison into the
different types of graph engines mentioned:
Single machine, out-of-core. MOSAIC outperforms other
out-of-core systems by far, up to 58.6× for GraphChi, 29.8×
for X-Stream, and 8.4× for GridGraph, although they are all
running on ramjet with six NVMes in a RAID 0. Figure 8
shows the I/O behavior of the other engines compared to
MOSAIC over 25 seconds of Pagerank. MOSAIC finishes 5
iterations while both X-Stream and GraphChi do not finish
any iteration in the same timeframe. GridGraph finishes
one iteration and shows less throughput than MOSAIC even
though its input data is 4.3× larger. Furthermore, compared to
the other engines, MOSAIC’s tiling structure not only reduces
the total amount of I/O required for computation, but is also
favorable to hardware caches; it results in a 33.30% cache
miss rate on the host, 2.34% on the Xeon Phi, which is
distinctively smaller than that of the other engines (41.92–
80.25%), as shown in Table 7.

Compared with other out-of-core graph engines running
the WCC algorithm to completion, MOSAIC shows up to
801× speedup while maintaining a minimum speedup of
1.4× on small graphs, as shown in Table 8. MOSAIC achieves
this speedup due to its efficient selective scheduling scheme,
saving I/O as well as computation, while the edge-centric
model in X-Stream is unable to take advantage of the low
number of active edges. GraphChi shows poor I/O throughput
and is unable to skip I/O of inactive edges in a fine-grained
manner. MOSAIC outperforms GridGraph due to reduced I/O
and better cache locality.
Single machine, in-memory. MOSAIC shows performance
close to other in-memory systems, only being slower by at
most 1.8× than the fastest in-memory system, Polymer, while
outperforming Ligra by up to 2×. Compared to these systems,

Single machine Distributed systems
Dataset Out-of-core In-memory GPGPU Out-of-core In-memory

MOSAIC GraphChi † X-Stream † GridGraph † Polymer Ligra TOTEM GTS Chaos32 GraphX16 McSherry16
rmat24 0.31 s 14.86 s (47.9×) 4.36 s (14.1×) 1.12 s (3.6×) 0.37 s 0.25 s - - - - -
twitter 1.87 s 65.81 s (35.2×) 19.57 s (10.5×) 5.99 s (3.2×) 1.06 s 2.91 s 0.56 s 0.72 s - 12.2 s 0.53 s
rmat27 3.06 s 100.02 s (32.7×) 27.57 s (9.0×) 8.38 s (2.7×) 1.93 s 6.13 s 1.09 s 1.42 s 28.44 s -
uk2007-05 1.76 s 103.18 s (58.6×) 52.39 s (29.8×) 14.84 s (8.4×) - - 0.85 s 1.24 s - 8.30 s 0.59 s

Table 6: The execution time for one iteration of Pagerank on out-of-core, in-memory engines and GPGPU systems running either on a single
machine or on distributed systems (subscript indicates number of nodes). Note the results for other out-of-core engines (indicated by †)
are conducted using six NVMes in a RAID 0 on ramjet. We take the numbers for the GPGPU (from [33]), in-memory systems and the
distributed systems from the respective publications as an overview of different architectural choices. We include a specialized in-memory,
cluster Pagerank system developed by McSherry et al. [43] as an upper bound comparison for in-memory, distributed processing and show
the GraphX numbers on the same system for comparison. MOSAIC runs on ramjet with Xeon Phis and NVMes. MOSAIC outperforms the
state-of-the-art out-of-core engines by 3.2–58.6× while showing comparable performance to GPGPU, in-memory and out-of-core distributed
systems.

Graph LLC IPC CPU I/O I/O
Engine miss usage bandwidth amount

GraphChi 80.25% 0.28 2.10% 114.0 MB/s 16.03 GB
X-Stream 55.93% 0.91 40.6% 1,657.9 MB/s 46.98 GB
GridGraph 41.92% 1.16 45.08% 1,354.8 MB/s 55.32 GB

MOSAIC Host 33.30% 1.21 21.28%
2,027.3 MB/s 1.92 GB

MOSAIC Phi 2.34% 0.29 44.94% 10.17 GB

Table 7: Cache misses, IPC and I/O usages for out-of-core engines
and MOSAIC for Pagerank on uk2007-05, running in ramjet with
one NVMe. The Hilbert-ordered tiling in MOSAIC results in better
cache footprint and small I/O amount.

Dataset Single machine

MOSAIC GraphChi X-Stream GridGraph

rmat24 3.92 s 172.079 s (43.9×) 26.91 s (6.9×) 5.65 s (1.4×)
twitter 18.58 s 1,134.12 s (61.0×) 436.34 s (23.5×) 46.19 s (2.5×)
rmat27 22.18 s 1,396.6 s (63.0×) 274.33 s (12.4×) 62.97 s (2.8×)
uk2007-05 5.34 s 4,012.48 s (751.4×) 4,277.60 s (801.0×) 71.13 s (13.3×)

Table 8: The execution time for WCC until completion on single
machine out-of-core engines. GraphChi, X-Stream and GridGraph
use six NVMes in a RAID 0 on ramjet. MOSAIC outperforms the
state-of-the-art out-of-core engines by 1.4×–801×.

MOSAIC is able to scale to much bigger graph sizes due
to its design as an out-of-core engine, but it can still show
comparable performance.
Single machine, GPGPU. Compared to GPGPU systems,
MOSAIC is slower by a factor of up to 3.3× compared against
TOTEM, an in-memory system. In comparison, MOSAIC is
able to scale to much larger graphs due to its out-of-core
design. Compared to GTS in the in-memory mode, MOSAIC
is 2.6×–1.4× slower. However, when running in an out-of-
core mode, MOSAIC can achieve up to 2.9 B edges per second
(hyperlink14), while GTS achieves less than 0.4 B edges per
second as an artifact of its strategy for scalability being bound
to the performance of a single GPGPU.
Distributed system, out-of-core. Compared with Chaos,
an out-of-core distributed engine, MOSAIC shows a 9.3×
speedup on the rmat27 dataset. Furthermore, MOSAIC out-
performs Chaos by a factor of 9.2× on a trillion-edge graph.
Chaos is bottlenecked by network bandwidth to the disks,
while MOSAIC 1) reduces the necessary bandwidth due to its

compact tile structure and 2) uses a faster interconnect, the
internal PCIe bus.
Distributed system, in-memory. MOSAIC shows compet-
itive performance to in-memory distributed systems, only
being outperformed by up to 3.5× by a specialized clus-
ter implementation of Pagerank [43] while outperforming
GraphX by 4.7×–6.5×. Even though these systems might
show better performance than MOSAIC, their distributed de-
sign is very costly compared to the single machine approach
of MOSAIC. Furthermore, although these systems can the-
oretically support larger graphs – beyond a trillion edges –
we believe there is an apparent challenge in overcoming the
network bottleneck in bandwidth and speed to demonstrate
this scale of graph processing in practice.
Impact of Preprocessing. We compare the impact of
MOSAIC’s preprocessing against other out-of-core single
machine systems. GridGraph preprocesses the twitter graph
in 48.6 s and the uk2007-05 graph in 2 m 14.7 s, thus MOSAIC
outperforms GridGraph after 20 iterations of Pagerank for
twitter and 8 iterations for the uk2007-05 graph. X-Stream
does not have an explicit preprocessing phase, but is much
slower per iteration than MOSAIC, thus MOSAIC is able to
outperform it after 8 (twitter) and 5 (uk2007-05) iterations.
This demonstrates that MOSAIC’s optimizations are effective
and show a quick return on investment, even though at the
cost of a more sophisticated preprocessing step.
8.4 Evaluating Design Decisions
We perform experiments to show how our design decisions
impact MOSAIC’s performance.

8.4.1 Hilbert-ordered Tiling

Tile encoding. MOSAIC’s compact data format is key to
reducing I/O during graph processing. The use of short (2
bytes), tile-local identifiers and the CSR representation of
the local graph in a tile saves disk storage by 30.6–45.0%
in synthetic datasets (4.4–5.5 byte/edge) and 29.4–68.8% in
real-world datasets (2.5–5.6 byte/edge).

In quantity, it saves us 327 GB (-68.3%) in our largest real-
world dataset (hyperlink14) and over 3,184 GB (-39.8%) in a

Traversal #tiles Pagerank BFS WCC

miss time miss time miss time

Hilbert 8,720 33.30% 1.87 s 25.99% 11.20 s 26.12% 18.58 s
Row First 7,924 58.87% 1.97 s 46.33% 13.60 s 47.49% 19.03 s
Column First 10,006 34.38% 2.92 s 45.53% 18.78 s 45.83% 32.45 s

Table 9: Performance of different traversal strategies on Mosaic
using the twitter graph. MOSAIC achieves a similar locality than the
column first strategy which is focused on perfect writeback locality
while providing better performance due to less tiles and better
compression. MOSAIC shows up to 81.8% better cache locality
on the host than either of the traversal strategies.

0.1

1

10

100

50k 100k

Ti
le

si
ze

(M
B

)

hyperlink14

0.1

1

10

100

2k 4k
Tile id (sorted by its size)

uk2007-05

0.1

1

10

100

4.5k 9k

twitter #Phi Tiles data

1 30.98 GB
2 31.43 GB
3 30.85 GB
4 30.73 GB

Meta 28.81 GB

Figure 9: The tile size distribution and the total amount tiles
allocated for each Xeon Phis for real-world datasets. The average tile
size is 1.2 MB for hyperlink14, 1.9 MB for uk2007-05 and 1.1 MB
for the twitter dataset. The tiles are evenly distributed among Xeon
Phis.

partitions PR BFS WCC SpMV TC

1 4.41 s 1.54 s 31.05 s 2.65 s 8.01 s
optPartitions 1.76 s 1.56 s 5.34 s 1.49 s 4.31 s
optPartitions ∗ 10 2.74 s 1.58 s 5.35 s 2.19 s 15.65 s

Table 10: The effects of choosing different split points for
tiles on the uk2007-05 graph. The optimal number of partitions,
optPartitions, is calculated dynamically as described in §5.5 and
improves the total running time by up to 5.8× by preventing starva-
tion.

trillion-edge graph (rmat-trillion) (see Table 4), significantly
reducing the I/O required at runtime.
Hilbert-ordering. MOSAIC achieves cache locality by fol-
lowing the Hilbert-order to traverse tiles. The impact of this
order is being evaluated using different strategies to construct
the input for MOSAIC. In particular, two more strategies are
being evaluated: Row First and Column First. These strate-
gies are named after the mechanism in which the adjacency
matrix is being traversed, with the rows being the source
and the columns being the target vertex sets. The Row First
strategy obtains perfect locality in the source vertex set while
not catering to the locality in the target set. The Column First
strategy, similar to the strategy used in GridGraph, obtains
perfect locality in the target vertex set while not catering to
locality in the source set. The results with respect to locality
and execution times are shown in Table 9. These results show
that the Hilbert-ordered tiles obtain the best locality of all
three strategies, with up to 81.8% better cache locality on the
host, reducing the execution time by 2.4%-74.7%.
Static load balancing. The size of tiles varies although the
number of unique vertices is fixed. The static load balancing
is able to keep the data sizes between all Xeon Phis similar.
In hyperlink14, 65% of the tiles are sized between 120 KB

0k
2k
4k
6k
8k

10k

2 4 6 8 10 12 14 16
0
0.5
1
1.5
2

#
ac

tiv
e

til
es

Ti
m

e
(s

ec
)

iteration

Tiles
Time w/o SelSched

Time SelSched

Figure 10: The number of active tiles per iteration and the execution
time per iteration with and without the selective scheduling on
twitter for BFS. It converges after 16 iterations and improves the
performance by 2.2×.

and 1 MB, with the largest tile being about 150 MB. However,
this inequality of tile sizes does not result in issues with any
imbalanced workloads between Xeon Phis. In MOSAIC, the
tiles get distributed in a round-robin fashion to the multiple
Xeon Phis, resulting in even distribution (e.g., less than 3%
in hyperlink14) among Xeon Phis (see Figure 9).
Dynamic load balancing. The dynamic load-balancing
mechanism for MOSAIC allows tiles to be split to avoid a
head-of-line blocking situation to occur. The calculated num-
ber of tile partitions is optPartitions. Table 10 details the
impact of an improperly chosen tile split point using the
uk2007-05 graph. Disabling the dynamic load balancing in-
creases the running time by up to 2.5× (Pagerank) and 5.8×
(WCC). Similarly, dynamic load balancing with too many
partitions (optPartitions ∗ 10) results in degraded perfor-
mance as well due to increased overhead from processing
more partial results. Too many partitions result in overheads
of 57% (Pagerank) and up to 3.6× (TC).

8.4.2 Global Reducer

MOSAIC uses global reducers (see §4.3) to 1) enable NUMA-
aware memory accesses on host processors, yet fully exploit
parallelism, and 2) avoid global synchronization in updating
the global vertex array for reduce operations.
Striped partitioning. The impact of striped partitioning is
significant: with two global reducers on ramjet (one per
NUMA domain) with twitter, it increases the end-to-end
performance by 32.6% compared to a usual partitioning.
Avoiding locks. The dedicated global reducers update the
vertex values in a lock-free manner. This allows 1.9× end-
to-end improvement over an atomic-based approach and a
12.2× improvement over a locking-based approach, with 223-
way-hashed locks to avoid a global point of contention on the
twitter graph.

8.4.3 Execution Strategies

Selective scheduling. MOSAIC keeps track of the set of ac-
tive tiles (i.e., tiles with at least one active source vertex), and
fetches only the respective, active tiles from disk. Figure 10
shows the number of active tiles in each iteration when run-
ning the BFS algorithm with twitter until convergence on
vortex. It improves the overall performance by 2.2× (from
25.5 seconds to 11.2 seconds) and saves 59.1% of total I/O
(from 141.6 GB to 57.9 GB).

5
10
15
20
25
30
35
40

1 2 3 4#
ite

ra
tio

ns
/m

in
ut

e

pair of Phi+NVMe
30 40 50 60

1

30 40 50 60
— Xeon Phi threads —

2

30 40 50 60

3

30 40 50 60

4

Figure 11: Time per iteration (a) with increasing pairs of a Xeon
Phi and a NVMe (left one), and (b) with increasing core counts in
multiple Xeon Phis from 1 to 4 . MOSAIC scales very well when
increasing the number of threads and scales reasonably up to the
fourth Xeon Phi, when NVMe I/O is starting to be saturated.

Fault tolerance. We implement fault tolerance by flushing
the state of the vertices to disk in every superstep. As
this operation can be overlapped with reading the states
of the vertices for the next iteration, it imposes negligible
performance overhead. For example, MOSAIC incurs less
than 0.2% overhead in case of the Pagerank algorithm (i.e.,
flushing 402 MB in every iteration) with uk2007-05 and
twitter on ramjet.
8.5 Scalability
When increasing the number of Xeon Phi and NVMe pairs
from one to four, it scales the overall performance of Pagerank
(uk2007-05) by 2.8× (see Figure 11). MOSAIC scales well
up to the fourth Xeon Phi, when NVMe I/O starts to become
saturated. The graphs on the right side (1 – 4) show in detail
how an increasing number of cores of each Xeon Phi affects
MOSAIC’s performance, highlighting MOSAIC’s scalability
when adding more cores.
8.6 MOSAIC using the CPU only
To show the effectiveness of the techniques developed for
MOSAIC, we compare the execution of MOSAIC on ramjet
using the previous setup of four Xeon Phis and six NVMes
with a CPU-only setup using only the six NVMes. The results
of this setup are shown in Table 11 and show that the CPU-
only setup is mostly competitive with the Xeon Phi-enabled
setup. The CPU-only setup is at most 2.1× slower than the
Xeon Phi-enabled setup while outperforming it by up to 5.5×
for algorithms with very small data movements per iteration
(such as SSSP and BFS), due to the CPU-only setup being
able to move data in memory while the Xeon Phi-enabled
setup has to copy data over the slower PCIe interface.

9. Discussion
Limitations. To scale MOSAIC beyond a trillion edges,
a few practical challenges need to be addressed: 1) the
throttled PCIe interconnect, 2) the number of attachable PCIe
devices, 3) slow memory accesses in a Xeon Phi, and 4) the
NVMe throughput. Next-generation hardware, such as PCIe-
v4, Xeon Phi KNL [26], and Intel Optane NVMe [24], is
expected to resolve 1), 3) and 4) in the near future, but to
resolve 2), devices such as a PCIe switch [29] need to be
further explored.
Cost effectiveness. In terms of absolute performance, we
have shown that out-of-core processing of MOSAIC can be

comparable to distributed engines [16, 17, 53, 60] in handling
tera-scale graphs. Moreover, MOSAIC is an attractive solu-
tion in terms of cost effectiveness, contrary to the distributed
systems requiring expensive interconnects like 10 GbE [43],
40 GbE [53] or InfiniBand [60], and huge amount of RAM.
The costly components of MOSAIC are coprocessors and
NVMes, not the interconnect among these. Their regular
prices are around $750 (e.g., 1.2 TB Intel SSD 750) and
around $549 (Xeon Phi 7120A, used in MOSAIC), respec-
tively.
Conversion. In MOSAIC, we opt for an active conversion
step, offline and once per dataset, to populate the tile abstrac-
tion from the raw graph data. In a real-world environment,
these conversion steps can easily be integrated into an initial
data collection step, amortizing the cost of creating partitions
while only revealing the costs for populating tiles. As shown
in §8.1, the conversion time is comparable to other systems
such as GridGraph [66].
COST. Many large-scale graph systems fundamentally suf-
fer from achieving their scalability at the expense of absolute
performance. The COST [44] can be applied to MOSAIC to
evaluate its inherent overhead for scalability: for uk2007-05, a
single-threaded, host-only implementation (in-memory) [44]
on ramjet took 8.06 seconds per iteration, while the out-
of-core computation of MOSAIC on ramjet with one Xeon
Phi/NVMe using 31 cores on the Xeon Phi matches this per-
formance. At its maximum, MOSAIC is 4.6× faster than the
single-threaded, in-memory implementation. Similarly, for
the twitter graph, a single-threaded, host-only implementation
spends 7.23 s per iteration, while MOSAIC matches this per-
formance using one Xeon Phi with 18 cores with a maximum
speedup of 3.86×.

10. Related work
The field of graph processing has seen efforts in a num-
ber of different directions, ranging from engines on sin-
gle machines in-memory [30, 42, 48, 51, 55, 58, 63] to
out-of-core engines [18, 34, 36, 52, 59, 65, 66] to clus-
ters [10, 13, 16, 17, 27, 37–41, 46, 53, 60–62, 67], each
addressing unique optimization goals and constraints (see Ta-
ble 1).
Single machine vs. clusters. Out-of-core graph processing
on a single machine was presented by GraphChi [36] and X-
Stream [52] in a scale of a few billion edges. GridGraph [66]
and FlashGraph [65] are both single-machine engines that
are most similar in spirit to MOSAIC in terms of internal data
structure and faster storage, but MOSAIC is by far faster (i.e.,
better locality and smaller amount of disk I/O) and more
scalable (i.e., beyond a tera-scale graph) due to its novel
internal data structure and the use of coprocessors.

Trillion-edge graph analytics has been demonstrated by
Chaos [53] (out-of-core), GraM [60] (in-memory engine,
RDMA), and Giraph [11] using over 200 servers. MOSAIC
outperforms Chaos by a significant margin for trillion-edge

Graph PR‡ BFS† WCC† SpMV‡ TC‡ SSSP† BP‡

⋆rmat24 0.35 s (+13%) 2.33 s (-51%) 2.74 s (-43%) 0.24 s (-25%) 1.55 s (+6%) 9.7 s (-21%) 1.01 s (+115%)
twitter 2.04 s (+9%) 12.13 s (+8%) 16.26 s (-14%) 1.79 s (+8%) 10.75 s (+14%) 63.96 s (+18%) 7.94 s (+49%)

⋆rmat27 3.20 s (+5%) 23.68 s (+39%) 28.77 s (+30%) 3.16 s (+15%) 17.03 s (+3%) 117.20 s (+15%) 11.82 s (+40%)
uk2007-05 2.51 s (+43%) 0.44 s (-255%) 4.71 s (-13%) 2.36 s (+58%) 6.64 s (+54%) 0.37 s (-454%) 3.66 s (-25%)
hyperlink14 38.53 s (+78%) 5.03 s (-30%) 1007.56 s (+42%) 32.82 s (+70%) 110.85 s (+63%) 7.15 s (-21%) 65.10 s (-9%)

⋆rmat-trillion 1358.67 s (+9%) 6984.46 s (+77%) 8650.66 s (+17%) 1257.50 s (+4%) 6128.57 s (+8%) - -

Table 11: The execution times for running graph algorithms on MOSAIC with real and synthetic (marked ⋆) datasets, comparing the execution
times on ramjet using the CPU only with the times report in Table 5 on ramjet with four Xeon Phis. We report the seconds per iteration
for iterative algorithms (‡: PR, SpMV, TC, BP), while reporting the total time taken for traversal algorithms (†: BFS, WCC, SSSP). A red
percentage indicates cases where the CPU-only execution ran slower compared to the Xeon Phi-enabled one while a green percentage indicates
faster execution times.

processing, while having the added benefits of being a sin-
gle machine engine, with a lower entrance barrier, easier
maintenance (e.g., fault tolerance), and extensibility (see §9).

In comparison to G-Store [34], which aims at compressing
undirected graphs with up to a trillion edges, MOSAIC is able
to significantly reduce the size and increase the cache locality
of directed graphs.
Using accelerators. A handful of researchers have tried us-
ing accelerators, especially GPGPUs [8, 9, 20, 31–33, 47, 54,
57], for graph processing due to their massive parallelism. In
practice, however, these engines have to deal with the problem
of large data exchange between the host and one or a group
of GPGPUs to achieve better absolute performance. MOSAIC
solves this problem by tunneling P2P DMA between Xeon
Phi and NVMes, which is the dominant data exchange path
in out-of-core graph analytics. In comparison to GTS [33], an
out-of-core GPGPU graph engine, MOSAIC achieves better
scalability in larger datasets due to its strategy of using local
graphs, while the strategy for scalability (Strategy-S) in GTS
is bound by the performance of a single GPGPU.
Graph representation. Real-world graph data tends to be
skewed and highly compressible [49], so a few graph engines,
such as LigraPlus [56], attempt to exploit this property.
MOSAIC’s tile structure provides a similar compression ratio
while at the same time omitting the overhead from decoding
the edge set at runtime.

11. Conclusion
We present MOSAIC, an out-of-core graph processing en-
gine that scales up to one trillion edges by using a single,
heterogeneous machine. MOSAIC opens a new milestone in
processing a trillion-edge graph: 21 minutes for an iteration
of Pagerank on a single machine. We propose two key ideas,
namely Hilbert-ordered tiling and a hybrid execution model,
to fully exploit the heterogeneity of modern hardware, such as
NVMe devices and Xeon Phis. MOSAIC shows a 3.2–58.6×
performance improvement over other state-of-the-art out-of-
core engines, comparable to the performance of distributed
graph engines, yet with significant cost benefits.

12. Acknowledgment
We thank the anonymous reviewers, and our shepherd, Marco
Canini, for their helpful feedback. This research was sup-

ported by the NSF award DGE-1500084, CNS-1563848,
CRI-1629851, ONR under grant N000141512162, DARPA
TC program under contract No. DARPA FA8650-15-C-7556,
DARPA XD3 program under contract No. DARPA HR0011-
16-C-0059, and ETRI MSIP/IITP[B0101-15-0644].

References
[1] NVM Express. http://www.nvmexpress.org/, 2017.

[2] Apache. Apache Giraph. http://giraph.apache.org/,
2011.

[3] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient
Semi-streaming Algorithms for Local Triangle Counting in
Massive Graphs. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’08, pages 16–24, 2008.

[4] Bell Labs. intro - introduction to the Plan 9 File Protocol, 9P.
http://man.cat-v.org/plan_9/5/intro, 2016.

[5] R. Bellman. On a Routing Problem. Technical report, DTIC
Document, 1956.

[6] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered Label
Propagation: A MultiResolution Coordinate-Free Ordering for
Compressing Social Networks. In Proceedings of the 20th
International World Wide Web Conference (WWW), pages 587–
596, Hyderabad, India, Apr. 2011.

[7] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Re-
cursive Model for Graph Mining. In Proceedings of the 2004
SIAM International Conference on Data Mining, pages 442–
446, Lake Buena Vista, FL, Apr 2004.

[8] S. Che. GasCL: A vertex-centric graph model for GPUs.
In Proceedings of High Performance Extreme Computing
Conference (HPEC), 2014 IEEE, pages 1–6, Sept 2014.

[9] L. Chen, X. Huo, B. Ren, S. Jain, and G. Agrawal. Efficient
and Simplified Parallel Graph Processing over CPU and MIC.
In Proceedings of the 2015 IEEE International Parallel and
Distributed Processing Symposium, IPDPS ’15, pages 819–828,
May 2015.

[10] R. Chen, J. Shi, Y. Chen, and H. Chen. PowerLyra: Differenti-
ated Graph Computation and Partitioning on Skewed Graphs.
In Proceedings of the 10th European Conference on Computer
Systems (EuroSys), pages 1:1–1:15, Bordeaux, France, Apr.
2015.

[11] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan. One Trillion Edges: Graph Processing
at Facebook-scale. Proceedings of the VLDB Endowment, 8

http://www.nvmexpress.org/
http://giraph.apache.org/
http://man.cat-v.org/plan_9/5/intro

(12):1804–1815, Aug 2015.

[12] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris,
and E. Kohler. The Scalable Commutativity Rule: Designing
Scalable Software for Multicore Processors. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles
(SOSP), pages 1–17, Farmington, PA, Nov. 2013.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Proceedings of the 6th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), San Francisco, CA, Dec. 2004.

[14] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-law
Relationships of the Internet Topology. In Proceedings of
the Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM ’99,
pages 251–262, New York, NY, USA, 1999. ACM.

[15] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some
Simplified NP-complete Problems. In Proceedings of the Sixth
Annual ACM Symposium on Theory of Computing, STOC ’74,
pages 47–63, New York, NY, USA, 1974. ACM.

[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
PowerGraph: Distributed Graph-parallel Computation on Natu-
ral Graphs. In Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages
17–30, Hollywood, CA, Oct. 2012.

[17] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph Processing in a
Distributed Dataflow Framework. In Proceedings of the
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 599–613, Broomfield, Colorado,
Oct. 2014.

[18] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and
H. Yu. TurboGraph: A Fast Parallel Graph Engine Handling
Billion-scale Graphs in a Single PC. In Proceedings of the
19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’13, pages 77–85, 2013.

[19] D. Hilbert. Über die stetige Abbildung einer Linie auf ein
Flächenstück. Mathematische Annalen, 38(3):459 – 460, 1891.

[20] S. Hong, T. Oguntebi, and K. Olukotun. Efficient Parallel
Graph Exploration on Multi-Core CPU and GPU. In Proceed-
ings of the 2011 International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pages 78–88,
2011.

[21] Intel Corporation. Intel Xeon Phi Coprocessor 7120A.
http://ark.intel.com/products/80555/Intel-Xeon-
Phi-Coprocessor-7120A-16GB-1238-GHz-61-core,
2012.

[22] Intel Corporation. Intel SSD 750 Series, 1.2 TB.
http://ark.intel.com/products/86741/Intel-
SSD-750-Series-1_2TB-2_5in-PCIe-3_0-20nm-MLC,
2015.

[23] Intel Corporation. Intel SSD DC P3608 Series. http:
//www.intel.com/content/www/us/en/solid-state-
drives/solid-state-drives-dc-p3608-series.html,
2015.

[24] Intel Corporation. Intel Optane NVMe. http:
//www.intel.com/content/www/us/en/architecture-

and-technology/non-volatile-memory.html, 2017.

[25] Intel Corporation. Intel QuickPath Interconnect. http:
//www.intel.com/content/www/us/en/io/quickpath-
technology/quickpath-technology-general.html,
2017.

[26] Intel Corporation. Intel Xeon Phi Knights Landing
(KNL). http://www.intel.com/content/www/us/en/
processors/xeon/xeon-phi-processor-product-
brief.html, 2017.

[27] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A
Peta-Scale Graph Mining System Implementation and Obser-
vations. In Proceedings of the 2009 Ninth IEEE International
Conference on Data Mining, ICDM ’09, pages 229–238. IEEE
Computer Society, 2009.

[28] U. Kang, D. Chau, and C. Faloutsos. Inference of Beliefs on
Billion-Scale Graphs. The 2nd Workshop on Large-scale Data
Mining: Theory and Applications, 2010.

[29] P. Kennedy. Avago and PLX - Future of PCIe? http://
www.servethehome.com/avago-plx-future-pcie, Aug
2015.

[30] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams,
and P. Kalnis. Mizan: A System for Dynamic Load Balancing
in Large-scale Graph Processing. In Proceedings of the 8th
European Conference on Computer Systems (EuroSys), pages
169–182, Prague, Czech Republic, Apr. 2013.

[31] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. Cusha:
Vertex-centric graph processing on gpus. In Proceedings of the
23rd International Symposium on High-performance Parallel
and Distributed Computing, HPDC ’14, pages 239–252, New
York, NY, USA, 2014. ACM.

[32] F. Khorasani, R. Gupta, and L. N. Bhuyan. Scalable SIMD-
Efficient Graph Processing on GPUs. In Proceedings of
2015 International Conference on Parallel Architecture and
Compilation (PACT), pages 39–50, Oct 2015.

[33] M.-S. Kim, K. An, H. Park, H. Seo, and J. Kim. GTS:
A Fast and Scalable Graph Processing Method Based on
Streaming Topology to GPUs. In Proceedings of the 2016
ACM SIGMOD/PODS Conference, San Francisco, CA, USA,
June 2016.

[34] P. Kumar and H. H. Huang. G-store: High-performance Graph
Store for Trillion-edge Processing. In Proceedings of the 2016
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’16), pages 71:1–71:12,
Salt Lake City, UT, Nov. 2016.

[35] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter,
a Social Network or a News Media? In Proceedings of the
19th International World Wide Web Conference (WWW), pages
591–600, Raleigh, NC, Apr. 2010.

[36] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-
scale Graph Computation on Just a PC. In Proceedings of the
10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 31–46, Hollywood, CA, Oct.
2012.

[37] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. GraphLab: A New Framework For
Parallel Machine Learning. In Proceedings of the Twenty-

http://ark.intel.com/products/80555/Intel-Xeon-Phi-Coprocessor-7120A-16GB-1238-GHz-61-core
http://ark.intel.com/products/80555/Intel-Xeon-Phi-Coprocessor-7120A-16GB-1238-GHz-61-core
http://ark.intel.com/products/86741/Intel-SSD-750-Series-1_2TB-2_5in-PCIe-3_0-20nm-MLC
http://ark.intel.com/products/86741/Intel-SSD-750-Series-1_2TB-2_5in-PCIe-3_0-20nm-MLC
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-dc-p3608-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-dc-p3608-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-dc-p3608-series.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-processor-product-brief.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-processor-product-brief.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-processor-product-brief.html
http://www.servethehome.com/avago-plx-future-pcie
http://www.servethehome.com/avago-plx-future-pcie

Sixth Conference on Uncertainty in Artificial Intelligence (UAI
2010), pages 340–349, Catalina Island, CA, July 2010.

[38] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein. Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the Cloud. Proceedings
of the VLDB Endowment, 5(8):716–727, Aug. 2012.

[39] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry.
Challenges in Parallel Graph Processing. Parallel Processing
Letters, 17(01):5–20, 2007.

[40] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A System for Large-
scale Graph Processing. In Proceedings of the 2010 ACM
SIGMOD/PODS Conference, pages 135–146, Indianapolis, IN,
June 2010.

[41] J. Malicevic, A. Roy, and W. Zwaenepoel. Scale-up Graph
Processing in the Cloud: Challenges and Solutions. In Pro-
ceedings of the Fourth International Workshop on Cloud Data
and Platforms, CloudDP ’14, pages 5:1–5:6, New York, NY,
USA, 2014. ACM.

[42] J. Malicevic, S. Dulloor, N. Sundaram, N. Satish, J. Jackson,
and W. Zwaenepoel. Exploiting NVM in Large-scale Graph
Analytics. In Proceedings of the 3rd Workshop on Interactions
of NVM/FLASH with Operating Systems and Workloads, pages
2:1–2:9, New York, NY, USA, 2015. ACM.

[43] F. McSherry and M. Schwarzkopf. The impact of fast
networks on graph analytics. https://github.com/
frankmcsherry/blog/blob/master/posts/2015-07-
31.md, Jul 2015.

[44] F. McSherry, M. Isard, and D. G. Murray. Scalability! But
at what COST? In 15th USENIX Workshop on Hot Topics in
Operating Systems (HotOS XV), Kartause Ittingen, Switzerland,
May 2015.

[45] R. Meusel, O. Lehmberg, C. Bizer, and S. Vigna. Web Data
Commons - Hyperlink Graphs. http://webdatacommons.
org/hyperlinkgraph/, 2014.

[46] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: A Timely Dataflow System. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles
(SOSP), pages 439–455, Farmington, PA, Nov. 2013.

[47] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin. GraphBIG:
Understanding Graph Computing in the Context of Industrial
Solutions. In Proceedings of the 2015 International Conference
for High Performance Computing, Networking, Storage and
Analysis (SC’15), pages 69:1–69:12, Austin, TX, Nov. 2015.

[48] D. Nguyen, A. Lenharth, and K. Pingali. A Lightweight Infras-
tructure for Graph Analytics. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles,
pages 456–471, Farmington, PA, Nov. 2013.

[49] Paolo Boldi and Sebastiano Vigna. The WebGraph Framework
I: Compression Techniques. In Proceedings of the 19th
International World Wide Web Conference (WWW), pages 595–
601, New York, NY, Apr. 2004.

[50] R. Pearce, M. Gokhale, and N. M. Amato. Multithreaded
Asynchronous Graph Traversal for In-Memory and Semi-
External Memory. In Proceedings of the 2010 International
Conference for High Performance Computing, Networking,

Storage and Analysis (SC’10), pages 1–11, New Orleans, LA,
Nov. 2010.

[51] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and
M. Haridasan. Managing Large Graphs on Multi-cores with
Graph Awareness. In Proceedings of the 2012 USENIX Annual
Technical Conference (ATC), pages 41–52, Boston, MA, June
2012.

[52] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: Edge-
centric Graph Processing Using Streaming Partitions. In
Proceedings of the 24th ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 472–488, Farmington, PA, Nov.
2013.

[53] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel.
Chaos: Scale-out Graph Processing from Secondary Storage.
In Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP), Monterey, CA, Oct. 2015.

[54] D. Sengupta, S. L. Song, K. Agarwal, and K. Schwan.
GraphReduce: Processing Large-scale Graphs on Accelerator-
based Systems. In Proceedings of the 2015 International Con-
ference for High Performance Computing, Networking, Stor-
age and Analysis (SC’15), pages 28:1–28:12, Austin, TX, Nov.
2015.

[55] J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In Proceedings
of the 18th ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP), pages 135–146, Shenzhen,
China, Feb. 2013.

[56] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and
Faster: Parallel Processing of Compressed Graphs with Ligra+.
In Proceedings of the 2015 Data Compression Conference,
DCC ’15, pages 403–412, Washington, DC, USA, 2015. IEEE
Computer Society.

[57] G. M. Slota, S. Rajamanickam, and K. Madduri. High-
Performance Graph Analytics on Manycore Processors. In
Proceedings of the 2015 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 17–27,
May 2015.

[58] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey. Graph-
Mat: High Performance Graph Analytics Made Productive.
Proceedings of the VLDB Endowment, 8(11):1214–1225, Jul
2015.

[59] K. Wang, G. Xu, Z. Su, and Y. D. Liu. GraphQ: Graph
Query Processing with Abstraction Refinement: Scalable and
Programmable Analytics over Very Large Graphs on a Single
PC. In Proceedings of the 2015 USENIX Annual Technical
Conference (ATC), pages 387–401, Santa Clara, CA, July 2015.

[60] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin,
Y. Dai, and L. Zhou. GraM: Scaling Graph Computation to the
Trillions. In Proceedings of the 6th ACM Symposium on Cloud
Computing (SoCC), Kohala Coast, Hawaii, Aug. 2015.

[61] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen. SYNC or
ASYNC: Time to Fuse for Distributed Graph-parallel Com-
putation. In Proceedings of the 20th ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP),
pages 194–204, San Francisco, CA, Feb. 2015.

https://github.com/frankmcsherry/blog/blob/master/posts/2015-07-31.md
https://github.com/frankmcsherry/blog/blob/master/posts/2015-07-31.md
https://github.com/frankmcsherry/blog/blob/master/posts/2015-07-31.md
http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/

[62] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauly, M. J. Franklin, S. Shenker, and I. Stoica. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing. In Proceedings of the 9th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI), pages 15–28, San Jose, CA, Apr. 2012.

[63] K. Zhang, R. Chen, and H. Chen. NUMA-aware Graph-
structured Analytics. In Proceedings of the 20th ACM Sym-
posium on Principles and Practice of Parallel Programming
(PPOPP), pages 183–193, San Francisco, CA, Feb. 2015.

[64] T. Zhang, J. Zhang, W. Shu, M.-Y. Wu, and X. Liang. Efficient
graph computation on hybrid CPU and GPU systems. The
Journal of Supercomputing, 71(4):1563–1586, 2015.

[65] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe,
and A. S. Szalay. FlashGraph: Processing Billion-Node Graphs
on an Array of Commodity SSDs. In 13th USENIX Conference
on File and Storage Technologies (FAST 15), pages 45–58,
Santa Clara, CA, Feb. 2015.

[66] X. Zhu, W. Han, and W. Chen. GridGraph: Large-scale Graph
Processing on a Single Machine Using 2-level Hierarchical
Partitioning. In Proceedings of the 2015 USENIX Annual
Technical Conference (ATC), pages 375–386, Santa Clara, CA,
July 2015.

[67] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A
Computation-Centric Distributed Graph Processing System.
In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 301–316,
Savannah, GA, Nov. 2016.

	Introduction
	Trillion Edge Challenges
	Background
	The Mosaic Engine
	Tile: Local Graph Processing Unit
	Hilbert-ordered Tiling
	System Components

	The Mosaic Execution Model
	Programming Abstraction
	Hybrid Computation Model
	Streaming Model
	Selective Scheduling
	Load Balancing
	Fault Tolerance

	Implementation
	Graph Algorithms
	Evaluation
	Experiment Setup
	Overall Performance
	Comparison With Other Systems
	Evaluating Design Decisions
	Hilbert-ordered Tiling
	Global Reducer
	Execution Strategies

	Scalability
	Mosaic using the CPU only

	Discussion
	Related work
	Conclusion
	Acknowledgment

